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Formulation of problems about the flow generated by jets in a fixed or fluidized 
granular bed is discussed. The solution of such a problem is considered for a sin- 
gle plane jet in a high layer. 

Two related problems arise in analyzing jet flows in granular layers. The first ("in- 
ternal") problem concerns the investigation of the hydrodynamics and mixing processes within 
individual jet tongues taking account of the presence of suspended particles therein and is 
examined semiempirically in [i], for instance. The second ("external") problem refers to an 
investigation of the perturbing influence of the jet on the hydrodynamics and transport pro- 
cess in the dense phase of the layer Outside the tongues; there is an example of such a prob- 
lem in [2]. The solution of the internal problem is especially important for modeling appa- 
ratus in which the main technological process is realized, namely, within the tongues of two- 
phase jets; the solution of the external problem is needed to analyze the structure of the 
near-grid zones of reactors with a fluidized bed, in estimating the shape of dead zones, etc. 

In principle these problems should be solved simultaneously under the imposition of con- 
ditions connecting the internal and external solutions in some zone separating the external 
and internal domains, where the shape of this zone (i.e., actually the jet configuration) as 
well as the parameters characterizing the exchange of the continuous and disperse phases be- 
tween the domains mentioned are unknown beforehand and should be determined during the solu - 
tion. So complete an analysis of two-phase jet flows is hardly possible at this time because 
of the uncertainty which occurs in the formation of both problems and the numerous mathema- 
tical difficulties which are apparent during their study in particular formulations. Hence, 
simplifying considerations must be used which permit separation of the formulation into the 
external and internalproblems. 

In particular, the external problem can be considered independently of the internal prob- 
lem if the boundary of the jet tongues is given from some additional considerations say, on 
the basis of test data. Then in the external region we arrive at problems about particle 
motion and about the filtration of the continuous phase in the moving porous body they formed, 
which is similar in meaning to the problems discussed in [2] in application to stationary jet 
propagation in alow fluidized bed. In the higher layers (such that jet tongues do not emerge 
at the upper boundary of the bed), the flow generated by the jets is substantially nonsta- 
tionary: Periodic bubble formation occurs accompanied by the collapse of the old and the 
subsequent development of new tongues [3-5]. 

Keeping in mind the construction of the simplest models of the continuous phase flux 
distribution due to the jets, it is reasonable to limit oneself to an analysis of only the 
filtration problem in a stationary formulation. The passage from a real nonstationary prob- 
lem to a model stationary problem corresponds to taking the average of the flow picture in a 
time interval which is large in comparison to the duration of a single cycle of bubble for- 
marion; the solution of this latter problem permits estimation of only the mean fluxes. It 
is hence necessary to use the appropriate mean boundary, introduced in [i, 3] and other pa- 
pers, as the stationary jet tongue boundary. 

Analogously to [2] we assume that the continuous phase is a gas so that changes in the 
dynamic gas pressure along the jet tongues can be neglected with a high degree of confidence, 
as compared to pressure changes in the dense phase of the layer due to the hydraulic drag of 

Institute of Mechanics Problems, Academy of Sciences of the USSR, Mosce~. Moscow Insti- 
tute of Chemical Machine Construction. Tambov Institute of Chemical Machine Construction. 
Translated from Inzhenerno-Fizicheskii Zhurnai, Vol. 33, No. 4, pp. 586-595, October, 1977. 
Original article submitted December i0, 1976. 

1136 0022-0841/77/3304-1136507.50 �9 1978 Plenum Publishing Corporation 



Y 
/4 

a 

a=zZ+(I+r) e 

F / / / / / / / , . . . . . , r ~ . .  ' / - - .  / / / / / / z / / e / / / e / / / / / i / l l z /  ~ " 

x ~ t+er 

F i g .  1. Conformal  mapping o f  t he  f i r s t  
quadrant of the flow plane into the upper 
half-plane. A slit on the imaginary axis 
of the z plane corresponds to the jet. The 
dashes denote the boundary of the region 
transformed into a bed of finite height in 
the case of injection of a collective of 
identical jets. 

the disperse phase. Additionally taking into account that the quantity of particles within 
the tongues is relatively small in conformity with test results [3-5], we arrive at the con- 
clusion that the pressure within each tongue can be considered independentof thecoordinates. 
Furthermore, because of the smallness of the characteristic particle velocity in the dense 
phase as compared to the gas velocity, in a first approximation it is generally possible to 
neglect the disperse phase motion by modeling it as a fixed porous body. Finally, for sim- 
plicity we consider the hydraulic drag to the flux being filtered as linear in the filtration 
rate (i.e., the Darcy law is valid) and the porosity of the granular layer outside the jet 
tongues as homogeneous. The former of these assumptions is of no value in principle since 
some effective proportionality factor can always be introduced which would play the part of 
the permeability of the porous body, while the latter assumption corresponds closely to real- 
ity outside the thin layer separating the dense phase from the jet tongues [4], whose exis- 
tence in this context can be neglected. 

The considerations elucidated permit correct formulation of the mathematicalproblem for 
arbitrary plane and spatial flows. Only the plane problem, for whose solution the powerful 
methods of analytic function theory can be used, will be considered below in the example of 
a flow near a single jet. For simplicity we consider the bed sufficiently high so that the 
influence of its upper boundary on the situation in the direct neighborhood of the jet could 
be neglected. The method of extending the results obtained to plane flows generated by a 
collective of jets in a granular bed of finite height is indicated at the end of the paper. 

Within the framework of the approximate formulation of the problem being considered, 
excess detailing of the jet tongue shape is meaningless and it is sufficient to investigate 
just the flow in the neighborhood of a jet of simplest shape to obtain qualitative results. 
We characterize the jet below by using a single parameter, its effective height h, by con- 
sidering the jet as infinitely thin. The quantity h is evidently a parameter which cannot, in 
principle, be determined just from an analysis of the external problem examined here and 
should be given a priori, for example, on the basis of experimental results. 

It is convenient to use the dimensionless coordinates x and y in the flow plane, which 
are introduced by using the scale h; the jet height is one in these coordinates~ In the 
general case, the base of the jet is at the height yh above the lower boundary of the bed so 
that the jet is a unit slit on the imaginary axis in the complex plane z = x + iy, as is shown 
in Fig. la. The analytic function 

$ ~ z~ + (1 + V) 2 (1 )  

transforms the first quadrant of the flow plane into the upper half of the plane ~ = $ + i~, 
where the corresponding edge of the slit is transformed into the segment (0.i + 2y) on the 
real axis of the ~ plane (Fig. ib). 

We describe the unperturbed state of the granular bed by using the relations 

u ~ = u ~ = c o n s t ,  dP~ - -  ~hu  ~ ( 2 )  
v dy 
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Fig. 2. Dependences of the dimensionless vetoc ~ 
i t y  components, introduced wi th  the scale Q/~h, 
on the dimensionless height y for different x 
(the numbers on the curves) and 7 = 0 (a, b) and 
y = i (c, d) for the injection of a single jet 
into a stagnant granular bed. The dashes denote 
the velocity jump on the line x = O. 

where the filtration rate u ~ can be both greater and less than the minimum rate of fluidiza- 
tion u,. The hydraulic drag coefficient ~ of the bed depends on the porosity; for u ~ > u, 
the quantity ~u ~ equals the weight of unit volume of the bed, which determines its porosity 
as a function of u ~ 

The gas pressure in the bed perturbed by the jet is a solution of the Laplace equation 
in the domain x > O, y > 0 which satisfies the condition that the normal derivative vanishes 
on the boundaries (y = 0 and x = O, y < y or y > i + 7) and takes on a constant value for 
x = O, 7 < Y < i + Y (which can be made equal to zero because of the selection of the pres- 
sure reference point). It is convenient to introduce the velocity potential Of the filtra- 
tion flow due to the presence of the jet so that 

= P - - P ~  u = u  ~  v = v ~ .  (3) 
=h 

We then have the fol lowing problem for  4: 

A~=O, O~ --O(y=O), w-~O(Izl-+oo), 
ay 

(4) 

O~ =O(x=O,  Y<Y, y > l @ %  ~ = u ~  7 < y < l + y ) .  
Ox 

Let us note that the condition at y = 0 corresponds to the assumption of constancy of 
the normal gas velocity component on the gas distributing grid and is customary for grids 
with high hydraulic drag. In principle, it is simple to consider other variants of the bound- 
ary condition at y = O; for instance, for grids with vanishingly small hydraulic drag the 
condition of constancy of the pressure (@ vanishes) in the grid plane is more natural. The 
condition as Izl § ~ reflects disappearance of the flow due to the jet at an infinitely re- 
mote point. 

In addition, let us consider the total gas discharge in the jet Q to be ~iven. It is 
clear from physical considerations that a relationship exists between the quantities Q and h 
which should be considered known within the framework of the theory being developed. 
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Fig. 3. Boundaries of the domain of 
possible ascending particle motion 
during injection of a single Jet 
through a hole in the base of an in- 
jected bed, corresponding to differ- 
ent F. 

Let us introduce the complex potential ~ = @ + i~, where ~ is a harmonic conjugate func- 
tion of ~~ In the ~ plane we have a mixed boundary-value problem of analytic function theory 
for ~, when the value Re# is given on the segment 0 < $ < i + 2y of the real axis, while the 
normal derivative of this quantity vanishes on the rest of the axis. Let us introduce yet 
another analytic function F(~) = d#/d~ which plays the part of the "complex velocity in the 

plane." According to [6], we have a particular case of the Hilbert problem for F(~) when 
the value Re F is given on part of the boundary of the domain ~ > 0 of the definition of 
F(~), while the value Im F is given on the rest of the boundary. Namely, byusing thegeneral 

Re F (~) acp arp a y  u ~ . . . . . . .  [(1 + VF'-- ~1 ~''-~ 
O~ ag o~ 2 

0 < ~ <  1 _ 2 7 ,  n = 0 ,  

method [6], we obtain 

(5) 

I m F ( ~ ) = 0 ,  ~<0, ~ > I @ 2  v, N=O 

after a simple computation using (4). Moreover, boundedness oi F(~) at all points of the 
upper half-plane, with the exception of the points ~ = 0 and ~ = i + 2y at which the integral 
of F(~) [i.e., of ~(~)] is bounded, and finiteness of the limit of F(~) as I~I § ~, are 
needed. 

The Hilbert problem formulated is solved by formal application of the known Keldysh-- 
Sedov formula [6]. Taking account of (5), we obtain 

I+2~ 

F ( ~ ) -  2n ~--([_27) j L(1 §  17i(t--~) 
0 

- -  ' F(oo) ; - - ( 1  @27) [~(~--(I -+-2?))] ~/2 =- (6) 

where the complex velocity U = v x -- ivy is expressed in the form 

(7) 
dz dE dz I~=~(z) 

From the  c o n d i t i o n  t h a t  U(z) v a n i s h e s  a t  i n f i n i t y  t h e r e  f o l i ows  t h a t  F(~) = O; the  a r -  
b i t r a r y  constant C can be determined from the condition that the gas flow in the jet equals 
Q. The complex potential ~(~) is found from (6) after integration with respect to d~, where 
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Fig. 4. Dependence of G on y (a) and pro- 
files of the dimensionless rates of injec- 
tion from the jet (b) for different 8. The 
dashes denote the definition of yo(B). 

the new arbitrary constant appearifig here is evaluated in conformity with the last condition 
in (4). 

For any y the integral in (6) can be expressed in terms of elliptic functions, but a 
numerical investigation in the general case turns out to be quite awkward. We consider here 
only two important particular cases. 

Injection of a Jet into a Fixed Bed (u ~ = 0). In this case we obtain from (6), (7) and 
the definition of ~(z) after simple calculations 

(z) = 2 Re(C !n{(~ + ~) ' /~  + 1~ + (1 + ?)2lZ '~}) + C', 
(8 )  

U(~ = 2Cz {(~ + ~)  Nz + (1 + ~21}-'z2 

L e t  us f i n d  t h e  c o n s t a n t s  C and C v . There  f o l l o w s  from t h e  d e f i n i t i o n  o f  t h e  d i s c h a r g e  

l -kV 

Q = 2h ~l u~['~=odg' 
V 

(9) 

where for x = 0, Y < Y < I + 7 we have from the second relationship in (8) 

Integrating, we obtain an expression from (9) and (i0) 

C = Q 
2~h 

Furthermore, from the last condition in (4) and from (Ii) 
have  

(io) 

(ii) 

for x = O, y < y < 1 + y we 

C ' = - -  t'~2.e ln( l@2Y)' (12) 
~h 

which finally determines the relationship in (8). 

Using the definition of the complex plane, and separating into real and imaginary parts 
in its expression in (8), we obtain a representation for the gas filtration velocity compo- 
nents 

- co~ (^~ i-  t_~ - -  D, 
~h r l r  ~ 

. r  
- -  sin ()u i- ia - -  ~.), 
r f~ 

2xy  
x 2 __ y2 

Q 

where we have introduced the notation 

. I/2 r = ( x ~ § 1 7 6  , 

(13) 

(14) 

%=:arctg --g-g = - ~ - - a r c t g - -  
x 2 

r l =  {ix z _  9z A_ (1 k ?)21~ + 4x292} 11~, 
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(14) 

For y = 0 the formula (13) simplifies considerably: 

u~--  ~hQ cos~.tq v'~o' u,,. nhQ sin~'tiq !v:=o~ . (15)  

Let us emphasize that the angles ~, ~,, and ~2 can vary in the range (0, ~/2) and their 
evaluation requires some attention. For instance, for y = 0 it follows from (14) that tan 
2X, = 0 for x = 0 and any y, but for y < I and y > 1 we have, respectively, Xt ~ 0 and %t = 
~ / 2 .  

A conception of the nature of the velocity fields in the neighborhood of the jet and 
about the influence of the parameter y thereon can be obtained from the curves in Fig. 2. 

The vertical component of the gas filtration velocity increases without limit upon ap- 
proaching the point x = 0, y = 1 + y, which is certainly related to the representation of the 
real jet tongue by using an infinitely thin slit. However, in any case it can be expected 
that this component will become sufficiently large in some domain near the upper part of the 
jet so as to exceed the quantity u,. Within the limits of such a region the particle weight 
is less than the upwardly directed vertical component of the hydraulic force; i.e., there is 
a potential possibility for the occurrence of ascending particle motion. Such an ascending 
motion should be compensated by the slipping of particles of friable material in the beds 
directly abutting the mentioned region from outside the boundary, by the appearance of a 
specific disperse phase circulation in the neighborhood of the jet, which is repeatedly ob- 
served in test. The boundary of the domain mentioned, which actually separates the zones of 
ascending and descending particle motion, can be estimated from the relationship 

1 r sin(X I 4 - % ~ - % ) -  hu ,  __ F, ( 1 6 )  
El f2 Q 

which implicitly definesthe two-parameter equation of the boundary. Here the quantities 
and F, characterizing the location of the jet base in the granular bed and the relationship 

between the minimal fluidization velocity and the gas discharge in the jet referred to its 
height, respectively, are the parameters. The shape of this domain corresponding to Y = 0 
and different F is shown in Fig. 3. 

Injection of a Jet through a Hole in a Gas-Distributing Grid (7 = 0). In this case the 
integral in (6), which is of interest for both a fixed infiltrative (u ~ < u,) and a fluidized 
(u ~ > u,) granular layer, is easily calculated, so that from (6) and (7) we have 

F (~) - c u ~ l r ~ +  1 

2C u ~ I r z z  ' 1 '  1 
r -- -- Ln v- v- 

U(z)  - 1, z ~ ' +1  ~r |rzZ + 1 - - 1 "  

For x = 0, 0 < y < i we obtain from the second relationship in (17) 

and we 

2C u ~ 1 - + - | /  = In !--Y2 
u~ = v.,: 1 '1  - -  yz u 1 - -  V 1 - -9  z 

furthermore find from condition (9) 

! 

C - -  Q , u ~ j" 1 2 - l / - 1 - - y z  
2~h r - ~ I ,  I = in i - | / - i - ~  dy. 

0 

(17) 

(18) 

(19) 

It is seen from (18) and (19) that as y + 0 or y + 1 the quantity u x is, respectively, 
negative or positive and its absolute value grows without limit. The sign of u x change s at 
the value y = yo, where Yo is the single root of the equation 
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This root is easily found graphically from Fig. 4a, on which the function G(y) is shown. The 
profiles Ux(Y) on the jet boundary corresponding to different 8 are shown in Fig. 4b. 

The critical value of the coordinate Yo(8) separates the lower and Upper part of the jet 
at which gas injection and ejection hold, respectively. The ejection domain evidently in- 
creases with the growth of 8 (i.e., with the diminution in u O and the increase in Q/h), being 
propagated in the whole jet as 8 § ~. This latter corresponds to jet injection into the fixed 
and uninjected bed considered above. Let us note that according to [4] the value yo(8) ac- 
tually determines the level at which contraction of the jet tongue is formed, the "redrawing" 
separating the bubble being developed from the lower part of the tongue. Therefore, the quan- 
tity Yo(8) can be used to estimate the size of the bubbles being formed during jet injection 
into a granular injectable bed. 

We again obtain expressions for the gas filtration velocity components by separating 
U(z) into real and imaginary parts and by using (19). We have 

( ~ h  21 ) cos )~, U ~ I I t ' + Z 2  ,2- 1 , 
u~ = v~ = + ---~. ,  u ~ In! .  _ ,. 

�9 " r l  -~ i [ t + z  z - I  ] 
(21) 

U ~ = U ~ 1 7 6  "v- ~z U~ -- US l ' / |@z2@I  

] r I ~ I I: 

where  r t  and I t  a r e  d e f i n e d  i n  ( 1 4 ) .  As i t  s h o u l d  b e ,  t h e s e  f o r m u l a s  go o v e r  i n t o  (15) f o r  
u ~ = 0.  As lz l  + ~ i t  f o l l o w s  f rom (12) t h a t  u x + 0,  Uy ~ u ~ 

L e t  us  f o r m u l a t e  an e q u a t i o n  to  d e t e r m i n e  t h e  b o u n d a r y  Uy = u , ,  wh ich  i s  a n a l o g o u s  t o  
(16). We obtain from (21) 

( ,  2I ) s i n ~ •  1 a r g ( l / l + z 2 + ~ )  1 1 I ~ . ~ - -  + - - =  r .  ( 2 2 )  
u~ r 1 ~ g 1 + z 2 -  

A s  $ § ~ t h i s  e q u a t i o n  a g r e e s  w i t h  t h a t  o b t a i n e d  f rom (16) f o r  y = 0. 

Us ing  ( 2 2 ) ,  t h e  b o u n d a r i e s  on which  t h e  v e r t i c a l  g a s - v e l o c i t y  component  a g r e e s  e x a c t l y  
w i t h  t h e  minimum f l u i d i z a t i o n  r a t e  c o r r e s p o n d i n g  co d i f f e r e n t  8 and r can  be  c o n s t r u c t e d .  
The b o u n d a r i e s  shown in  F i g .  3 h e n c e  c o r r e s p o n d  t o  8 + ~. L e t  F, and t h e r e f o r e ,  t h e  r a t i o  
Q/h as  w e l l ,  be  f i x e d .  With t h e  d i m i n u t i o n  o f  8 ( i . e . ,  w i t h  t h e  i n c r e a s e  o f  u ~ t h e  domain 
i n  which  Uy > u ,  and t h e r e  i s  t h e  p o s s i b i l i t y  o f  t h e  a p p e a r a n c e  o f  a s c e n d i n g  p a r t i c l e  m o t i o n ,  
e x p a n d s .  W h e n  t h e  v a l u e  u z = U, i s  r e a c h e d  ( i . e . ,  f o r  a f l u i d i z a t i o n  number o n e ) ,  t h e  l o w e s t  
p o i n t  o f  t h e  m e n t i o n e d  b o u n d a r y  emerges  on t h e  p l a n e  o f  t h e  gas  d i s t r i b u t i o n  g r i d  a t  a p o i n t  
i n f i n i t e l y  r e m o t e  f rom t h e  j e t  b a s e ;  t h e  o u t e r  and u p p e r  p a r t s  o f  t h e  b o u n d a r y  h e n c e  a l s o  
t e n d  toward  i n f i n i t y .  I n  t h i s  c a s e  U y ~ U ,  e v e r y w h e r e  w i t h  t h e  e x c e p t i o n  o f  a r e g i o n  d i r e c t l y  
a b u t t i n g  t h e  j e t ,  where  t h e  h o r i z o n t a l  d i m e n s i o n  o f  t h i s  r e g i o n  i n c r e a s e s  m o n o t o n i c a l l y  f rom 
z e r o  t o  i n f i n i t y  w i t h  t h e  d i m i n u t i o n  i n  y f rom one t o  z e r o .  As t h e  f l u i d i z a t i o n  number i n -  
c r e a s e s  f u r t h e r  i n  t h e  domain where  t h e  p a r t i c l e  w e i g h t  i s  n o t  compensa ted  c o m p l e t e l y  by t h e  
h y d r a u l i c  f o r c e s ,  t h e  f o r m a t i o n  o f  dead zo n es  i s  p o s s i b l e  and s l i p p i n g  o f  t h e  l a y e r s  o f  f r i -  
a b l e  m a t e r i a l  i s  r e d u c e d  m o n o t o n i c a l l y  up t o  t h e  a c h i e v e m e n t  o f  t h e  l i m i t  c o n f i g u r a t i o n  c a l -  
c u l a t e d  from (22) in the case 8 = 0. An investigation of the size and shape of this region 
may turn out tO be useful in estimating the magnitude and configuration of the dead zones oc- 
curring during jet gas injection in a prefluidized granular bed. 

In conclusion, let us notethat a method completely analogous tO that elucidated is also 
applicable in the consideration of other plane problems aboutjet flows in granular beds. 
The main difficulty in the practical reallzationof this method is in finding an analytic 
function which will map the representative domain of the flow plane conformally onto the upper 
half-plane, after which the Keldysh-- Sedov formulas can be applied directly to the variant 
of the Hilbert problem obtained. For instance, let us speak about the injection of a collec- 
tion of equidistantly arranged (at spacings 2Lh) identical plane jets into a granular bed of 
the finite height Hh. In this case it is sufficient to examine the situation in the square 
0 < x < L, 0 < y < H of the z plane shown by dashes in Fig. la. It follows from symmetry 
considerations that the normal derivative of @ vanishes for x = L and the condition @ = const 
at y = H results from the condition of constancy of the pressure above the bed. The conformal 
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mapping of the domain mentioned into the domain of Fig. ib is not accomplished by the simple 
function (i) in this case but by using Jacobi and Weierstrass elliptic functions [6], or by 
using trigonometric functions in the particular case H § ~. The Keldysh-- Sedov formula agai~ 
yields the solution of the problem in principle, but calculations and numerical computations 
may turn out to be quite awkward. 

NOTATION 

C, C', arbitrary constants; F, complex velocity in the ~ plane; G, a quantity introduced 
in Eq. (20); H, dimensionless height of the bed; h, height of the jet; I, integral in Eq. 
(19); L, half the dimensionless spacing between adjacent jets; p, pressure; Q, gas discharge 
into the jet; r, r,, r2, functions defined in Eq. (14); U, complex velocity; u, gas filtra- 
tion velocity; u,, minimal fluidization rate; v, excess velocity due to jet gas injection; 
x, y, dimensionless coordinates; z = x + iy; ~, hydraulic drag coefficient; ~, a parameter 
introduced in Eq. (20); F, a parameter introduced in Eq. (16); y, dimensionless height of the 
jet base above the gas distributing grid; ~ = ~ + in; ~, n, coordinates in the ~ plane; l, 
l,, ~2, angle functions introduced in Eq. (14); ~, complex potential; @, potential; 4, har- 
monic conjugate function to ~; the degree superscript refers to quantities characterizing the 
unperturbed state of the bed. 

l. 

2. 
3. 

, 

5. 
6. 
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SECTIONALIZED FLUIDIZED-BED EQUIPMENT FOR 

SOLUTION GRANULATION 

V. F. Volkov, G. I. Shishkin, 
V. V. Ukhlov, and M. M. Silkina 

UDC [66.096.5:66,099.2]:519 

A mathematical model is presented for solution granulation; the model has been 
tested by experiment. The model indicates that sectionalized equipment is suitable. 

We have previously [i] examined the advantages of two-stage (countercurrent and cross- 
flow) sectioning in a fluidized-bed system in which heat of reaction is released and this 
heat is removed by evaporation of input water. The sectionalization in that case gives a 
considerable improvement in the specific throughput. This system has now been introduced in 
a commercial equipment designed by the Urals Chemical-Research Institute and intended for 
treating sodium sulfate. 

However, the heat- andmass-transfer processes occurring in solution granulation are very 
different from those occurring in many fluidized beds. Here we employ mathematical simula- 
tion to examine the effects of sectioning on the performance parameters of a fluidized bed 
intended to handle solutions. The results show that sectioning improves the throughput with- 
out increasing the energy consumption. 

The model presupposes ideal mixing in the fluidized bed, so the temperature and effec- 
tive water content of the granules are taken as identical throughout the height of the bed. 
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